Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Engineering subtle targeted mutations into the mouse genome

Identifieur interne : 002149 ( Main/Exploration ); précédent : 002148; suivant : 002150

Engineering subtle targeted mutations into the mouse genome

Auteurs : Douglas B. Menke [Grèce, États-Unis]

Source :

RBID : ISTEX:759D7404B5167901ABD206D57087B733DC19B17F

English descriptors

Abstract

Homologous recombination in embryonic stem (ES) cells offers an exquisitely precise mechanism to introduce targeted modifications to the mouse genome. This ability to produce specific alterations to the mouse genome has become an essential tool for the analysis of gene function and the development of mouse models of human disease. Of the many thousands of mouse alleles that have been generated by gene targeting, the majority are designed to completely ablate gene function, to create conditional alleles that are inactivated in the presence of Cre recombinase, or to produce reporter alleles that label‐specific tissues or cell populations (Eppig et al., 2012, Nucleic Acids Res 40:D881–D886). However, there is a variety of powerful motivations for the introduction of subtle targeted mutations (STMs) such as point mutations, small deletions, or small insertions into the mouse genome. The introduction of STMs allows the ablation of specific transcript isoforms, permits the functional investigation of particular domains or amino acids within a protein, provides the ability to study the role of specific sites with in cis‐regulatory elements, and can result in better mouse models of human genetic disorders. In this review, I examine the current strategies that are commonly used to introduce STMs into the mouse genome and highlight new gene targeting technologies, including TALENs and CRISPR/Cas, which are likely to influence the future of gene targeting in mice. genesis 51:605–618. © 2013 Wiley Periodicals, Inc.

Url:
DOI: 10.1002/dvg.22422


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Engineering subtle targeted mutations into the mouse genome</title>
<author>
<name sortKey="Menke, Douglas B" sort="Menke, Douglas B" uniqKey="Menke D" first="Douglas B." last="Menke">Douglas B. Menke</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:759D7404B5167901ABD206D57087B733DC19B17F</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/dvg.22422</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-9LQH8JN4-C/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002399</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002399</idno>
<idno type="wicri:Area/Istex/Curation">002399</idno>
<idno type="wicri:Area/Istex/Checkpoint">000287</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000287</idno>
<idno type="wicri:doubleKey">1526-954X:2013:Menke D:engineering:subtle:targeted</idno>
<idno type="wicri:Area/Main/Merge">002173</idno>
<idno type="wicri:Area/Main/Curation">002149</idno>
<idno type="wicri:Area/Main/Exploration">002149</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Engineering subtle targeted mutations into the mouse genome</title>
<author>
<name sortKey="Menke, Douglas B" sort="Menke, Douglas B" uniqKey="Menke D" first="Douglas B." last="Menke">Douglas B. Menke</name>
<affiliation wicri:level="3">
<country>Grèce</country>
<placeName>
<settlement type="city">Athènes</settlement>
<region nuts="2" type="region">Attique (région)</region>
</placeName>
<wicri:orgArea>Department of Genetics, University of Georgia, Georgia</wicri:orgArea>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">genesis</title>
<title level="j" type="alt">GENESIS</title>
<idno type="ISSN">1526-954X</idno>
<idno type="eISSN">1526-968X</idno>
<imprint>
<biblScope unit="vol">51</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="605">605</biblScope>
<biblScope unit="page" to="618">618</biblScope>
<biblScope unit="page-count">14</biblScope>
<date type="published" when="2013-09">2013-09</date>
</imprint>
<idno type="ISSN">1526-954X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1526-954X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acad</term>
<term>Allele</term>
<term>Allelic series</term>
<term>Base pairs</term>
<term>Biallelic mutations</term>
<term>Biol</term>
<term>Biotechnol</term>
<term>Cas9</term>
<term>Cassette</term>
<term>Cell clones</term>
<term>Clone</term>
<term>Coding exons</term>
<term>Conditional alleles</term>
<term>Consortium</term>
<term>Deletion</term>
<term>Dsbs</term>
<term>Eppig</term>
<term>Exon</term>
<term>Extraneous sequences</term>
<term>Gene</term>
<term>Gene expression</term>
<term>Gene function</term>
<term>Genetics</term>
<term>Genome</term>
<term>Genome editing</term>
<term>Genome engineering</term>
<term>Grnas</term>
<term>High frequency</term>
<term>Homology</term>
<term>Human cells</term>
<term>Insertion</term>
<term>Knockout</term>
<term>Locus</term>
<term>Mammalian cells</term>
<term>Menke</term>
<term>Mouse</term>
<term>Mouse alleles</term>
<term>Mouse genome</term>
<term>Mouse models</term>
<term>Mouse mutations</term>
<term>Mouse zygotes</term>
<term>Mrna</term>
<term>Multiple genes</term>
<term>Mutation</term>
<term>Natl</term>
<term>Negative selection</term>
<term>Nhej</term>
<term>Nhej pathway</term>
<term>Nuclease</term>
<term>Nucleic</term>
<term>Nucleic acids</term>
<term>Null alleles</term>
<term>Pathway</term>
<term>Pbase</term>
<term>Piggybac</term>
<term>Point mutation</term>
<term>Point mutations</term>
<term>Positive selection</term>
<term>Proc</term>
<term>Proc natl acad</term>
<term>Recombinase systems</term>
<term>Recombinases</term>
<term>Recombination</term>
<term>Selectable</term>
<term>Selection cassette</term>
<term>Selection cassettes</term>
<term>Small deletions</term>
<term>Small insertions</term>
<term>Stm</term>
<term>Talens</term>
<term>Target sites</term>
<term>Transient expression</term>
<term>Transposon</term>
<term>Ttaa</term>
<term>Wang</term>
<term>Zfns</term>
<term>Zhang</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Homologous recombination in embryonic stem (ES) cells offers an exquisitely precise mechanism to introduce targeted modifications to the mouse genome. This ability to produce specific alterations to the mouse genome has become an essential tool for the analysis of gene function and the development of mouse models of human disease. Of the many thousands of mouse alleles that have been generated by gene targeting, the majority are designed to completely ablate gene function, to create conditional alleles that are inactivated in the presence of Cre recombinase, or to produce reporter alleles that label‐specific tissues or cell populations (Eppig et al., 2012, Nucleic Acids Res 40:D881–D886). However, there is a variety of powerful motivations for the introduction of subtle targeted mutations (STMs) such as point mutations, small deletions, or small insertions into the mouse genome. The introduction of STMs allows the ablation of specific transcript isoforms, permits the functional investigation of particular domains or amino acids within a protein, provides the ability to study the role of specific sites with in cis‐regulatory elements, and can result in better mouse models of human genetic disorders. In this review, I examine the current strategies that are commonly used to introduce STMs into the mouse genome and highlight new gene targeting technologies, including TALENs and CRISPR/Cas, which are likely to influence the future of gene targeting in mice. genesis 51:605–618. © 2013 Wiley Periodicals, Inc.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Grèce</li>
<li>États-Unis</li>
</country>
<region>
<li>Attique (région)</li>
</region>
<settlement>
<li>Athènes</li>
</settlement>
</list>
<tree>
<country name="Grèce">
<region name="Attique (région)">
<name sortKey="Menke, Douglas B" sort="Menke, Douglas B" uniqKey="Menke D" first="Douglas B." last="Menke">Douglas B. Menke</name>
</region>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Menke, Douglas B" sort="Menke, Douglas B" uniqKey="Menke D" first="Douglas B." last="Menke">Douglas B. Menke</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002149 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002149 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:759D7404B5167901ABD206D57087B733DC19B17F
   |texte=   Engineering subtle targeted mutations into the mouse genome
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021